MATHEMATICAL LOGIC HOMEWORK 3

Due Monday, February 26.

Problem 1. Let $\mathcal{L} = \{s\}$, where s is a unary function symbol. Let T be the \mathcal{L} - theory that asserts that s is a bijection with no cycles (i.e., $s(n)(x) \neq x$ for n = 1, 2, ...). For which cardinals κ is T κ -categorical? Is T complete? Prove your answer.

Problem 2. Let $\mathcal{L} = \{E\}$, where E is a binary function symbol. Let \mathcal{K} be the class of all models satisfying that E is an equivalence relation with infinitely many equivalence classes, all of which are infinite.

(a) Show that \mathcal{K} is an elementary class i.e. there is a theory T, such that $\mathfrak{A} \models T$ iff $\mathfrak{A} \in \mathcal{K}$.

(b) For which cardinals κ is T κ -categorical? Is T complete? Prove your answer.

Problem 3. Let $\mathcal{L} = \{<, 0, 1, +, \cdot, S\}$ and let $\mathfrak{A} = (\mathbb{N}, <, 0, 1, +, \cdot, S)$ be the standard model of arithmetic (here S(n) := n + 1 is the successor function). Let T be the theory of \mathfrak{A} . Show that every model \mathfrak{B} of T is an end-extension of \mathcal{A} , i.e. there is an embedding $f : \mathbb{N} \to B$, such that for all $b_1, b_2 \in B$, if $b_1 \in \operatorname{ran}(f)$ and $b_2 \notin \operatorname{ran}(f)$, then $b_1 <^{\mathfrak{B}} b_2$. (B is the universe of \mathfrak{B} ; see Definition 1.13 for the definition of an embedding.)

Problem 4. Let $\mathcal{L} = \{<, 0, 1, +, \cdot, S\}$ and \mathfrak{B} be a non standard model of the theory of $(\mathbb{N}, <, 0, 1, +, \cdot, S)$. I.e. there is an element b in the universe of \mathfrak{B} such that for all $n, \mathfrak{B} \models S^n(0) < b$. We call such b's infinite. (Recall that we proved the existence of such models.) Show that if b is an infinite element, then there are infinitely many infinite elements less than it.

Problem 5. Let κ be an uncountable cardinal. Show that DLO (the theory of dense linear order with no end points) is not κ -categorical.